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•J I. INTRODUCTION

Safety must always be one of the major concerns of the propelling
charge designer. Any candidate charge design must ultimately be shown to
be safe to produce, handle, ship, store, load, fire, and eventually de-
militarized. In this study, we confine our interest to safety during the

- Ifiring operation and, in particular, to problems resulting from overpressures,
which may be related to yressure waves in the gun chamber. As pointed
out by Budka and Knapton , "researchers have revealed one common charac-
teristic associated with the occurrence of unexpected high pressure ex-
cursions--namely, the existence of strong pressure waves in the gun system."
Yet many weapons with excellent safety records exhibit pressure waves, some
at substantial amplitudes. Techniques for distinguishing between acceptable
and unacceptable amplitudes of pressure waves are based on philosophies
that range all the way from "she ain't blown yet, so why worry now?" to
"all pressure waves are unacceptable!" While both views may be considered
impractical, the more conservative approach finds its origin in the costly
experiences of numerous catastrophic gun malfunctions 2 -7 , where large pres-
sure waves served as precursors to the overpressure or premature function-
ing of the payload. Further motivation arises from our lack of understanding
of the detailed phenrmenology of such failures, as articulated nearly three

1A. J. Budka and J.D. Knapton, "Pressure Wave Generation in Gun Systems: A
Survey," Ballistic Research Laboratory, Aberdeen Proving Ground, MD, Memor-
andum Report 2567, December 1975. (AD #BO08893L)

2 D. W. Culbertson, M. C. Shamblen, and J. S. O'Brasky, "Investigation of

5"/38 Gun In-6ore Ammunition Malfunctions," Naval Weapons Laboratory,
Dahigren, VA, TR-2624, December 1971.

3M. C. Shamblen and J. S. O'Brasky, "Investigation of 8"/55 Close Aboard
Malfunctions," Naval Weapons Laboratory, Dahigren, VA, TR-2753-, April 1973.

4 P. J. Olenick, "Investigation of the 76-mm/62 Caliber Mark 75 Gun Mount
Malfunctions," Naval Surface Weapons Center, Dahigren, VA, TR-3411, October
1975.

5E. V. Clarke, Jr. and I. W. May, "Subtle Effects of Low-Amplitude Pressure
Wave Dynamics on the Ballistics Performance of Guns," 11th JANNAF Combustion
Meeting, CPIA Publication 261, Vol. 1, pp. 141-156, December 1974.

6A. W. Horst, I. W. May, and E. V. Clarke, Jr., "The Missing Link Between
Pressure Waves and Breechblows," USA ARRADCOM, Ballistic Research Labora-
tory, Aberdeen Proving Ground, MD, Memorandum Report 02849, July 1978.
(A058354)

'K. H. Russel and H. M. Goldstein, "Investigation and Screening of M1?
Propellant Production for Lots Subject to Poor Low Temperature Performance,
Picatinny Arsenal, Dover, NJ, DB-TR-7-61, June 1961.
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decades ago by the British interior ballistician Lockett8, "It might be
pertinent to point out.. .that there is always some uncertainty in the
interpretation of what might be dismissed as minor irregularities in the
pressure-time curve. We have by bitter experience learned to regard such
irregularities with a degree of suspicion.. .because of the apparent ease
with which such minor flaws can turn over to major irregularities by some
mechanism not yet understood."

The problem of breechblows is of most concern to the U.S. Army with
respect to the design of high performance artillery bag charges. A typical
layout for such a charge is presented schematically in Figure 1. Principal

FLASH REDUCER
CENTER-CORE TUBE -

PRIMER-r-• 
SNAKE

OFFSET PNG HARGE

BASE PA)D[ STANDOFF VROTATING BAND__

Figure 1. Typical Centercore-Ignited Artillery Propelling Charge

components of the charge include a basepad igniter (usually containing black
powder or CBI*), a centercore igniter tube (containing additional igniter
material), and a main charge (typically multi-perforated, triple-base,
granular propellant). A cloth bag is employed to contain the charge, and
other components such as a flash inhibitor or wear-reducing additive may
be present. We postulate functioning of the charge to be described by
the following sequence of events. The basepad igniter is initiated by
the impingement of hot combustion products from a percussion primer. The
basepad then ignites the centercore charge, and together they ignite nearby
propellant grains. Combined igniter and propellant gases penetrate the
propellant bed, convectively heating the grains and resulting in flamespread.
During this process, the pressure gradient and interphase drag forces tend
to accelerate the propellant grains, largely in the forward direction,

8 N. Lockett, "British Work on Solid Propellant Ignition," Bulletin of the

First Symposium on Solid Propellant Ignition. Solid Propellant Information
Agency, Silver Spring, MD, September 19U3.

"Clean Burning Igniter," a nitrocellulose-based ignition material.
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"rusting,--them and any intervening elements against the projectile base.
Upon stagnation, a reflected compression wave in the gas phase may be formed,
its magnitude being subject to the combined effects of reduction in free
volume (due to bed compaction) and combustion in this low-porosity region.

If the charge functions as intended, smooth pressure-time curves as
shown in Figure 2 are obtained. A pressure-difference history, formed by
subtracting the pressure measured by a gage in the chamber wall near the
initial position of the projectile base (hereafter identified as the chamber
mouth) from the breech pressure as a function of time, reveals only the
normal forward-facing gradient associated with motion of the projcctile down
the tube. On occasion, however, pressure-time histories as shown in Figure 3
are obtained. High-amplitude, longitudinal pressure waves are clearly

RD 20-2
A - 30

0 0

a-~.30

60-
_4 -1'* 37

" 4 - 250

20-
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0  
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0 -.-.... * -.... ....... .... ......... ....... 0

4 8 12 16 20 24
TIME (ms)

Figure 2. Pressure-Time and Pressure-Difference Profiles

for a Properly-Ignited, High-Performance Charge
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Figure 3. Pressure-Time and Pressure-Difference Profiles,
Localized Base Ignition

manifested in the pressure-difference plot. Such phenomena have been trad-
itionally associated with localized ignition of the propellant bed and thus
may imply non-functioning or at least late functioning of the centercore
charge. Whether this wave dissipates or grows is dependent on a complex
interplay of events including gas production rates, ullage, bed permea-
bility and projectile motion. Thus, other factors in adlition to proper
functioning of the ignition train may be of importancz. Finally, increases
in maximum chamber pressure may or may not accompany such increases in
pressure-wave dynamics. The extreme cases which generate large pressure
waves may result in breechblows (see Figure 4).

In this study, we address the validity of a fundamental assumption
on which is based the procedure currently ?,sed by the U.S. Army to evaluate
the influence of pressure waves on those aspects of system safety related
to maximum chamber pressure.

i A.Currnt Pocedre I1. TECHNICAL DISCUSSION

As one facet of the overall safety assessment procedure for new

propelling charges for artillery, the Ballistic Research Laboratory (BRL)

12
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is often asked to comment on safety of the charge, particularly with

respect to any deleterious effects of pressure waves. While problems
arising from transient loads on the projectile base (both gas and solid
phase) associated with the presence of pressure waves will not be addressed
in this report, the influence of pressure waves on maximum chamber
pressure can be assessed in the following manner:

(1) Charge design sensitivity firings are conducted to determine the
relationship between -0i and maximum chamber pressure for the charge/r weapon combination. Intentionally-altered centercore or base-ignited

charges may be included to assure that data from a localized ignition
will result in a large -APi for a reasonable number of tests. More recent
assessments of base-ignited charges have included sensitivity testing with
special charges ir which faster-burning igniter materials have been sub-

-, stituted for the standard material.

Ii; (2) A failure criterion is identified, usually in terms of some

maximum chamber pressure, dictated most often by breech or payload failure

rZ (3) This faijure level is reinterpreted in terms of a -APi level,
determined from the sensitivity curve developed in Step (1).

(4) A sample population of firing data is then obtained which is
believed to be representative of "real-world" propelling charges, typical
of those to be fielded for use. One or more statistical distributions
are fit to these data.

(5) The probability of failure (as defined in Step (3)) can then be
statistically determined with respect to the distribution of -ALP. values
from Step (4).

An alternate form of this procedure is possible if the sample popu-
lation of firing data described in step (4) is available prior to sensi-
tivity testing. Based on this population, the -APi value to be associated
with the highest, acceptable probability for failure can be statistically
projected, and sensitivity testing to determine the corresponding chamber
pressure need not be continued beyond that point. In this fashion, while
we do not necessarily determine the -APi value corresponding to the maxi-
mum pressure failure criterion, we do ensure that this pressure limit is
not exceeded at that -APi level projected to occur at a frequency equal
to the highest allowable probability for failure. This alternate plan,
in some cases, may significantly reduce the risk of catastrophic over-
pressure during sensitivity testing.

Application of the basic procedure can be demonstrated with respect to a
data base available for the 175-mm, M107 gun. The relationship between -APi

14



and maximum chamber pressure for M86A2, Zoule 3 charges fired in the Ml07
gun, based on charge design sensitivity firings, is presented in Figure S. A
-APi failure criterion can also be identified on this curve, corresponding to
a known breech failure pressure level. Figure 6 then presents the cumulative
distribution of -APi levels for a data base considered to represent a ty2i-
cal population of "real-world" M86A2, Zone 3 charges. The probability of
achieving the -APi failure level, a! determined using Kolmogorov-Smirnov
statistics and two different population distribution functions, is presented
in Figure 7. The prediction of one failure in about half a million firings
compares quite favorably with historical data of half a dozen breechblows in
some two and one-half million firings to date. This agreement, although
satisfying, must be considered somewhat fortuitous.

800-

-. BRFECH FAILURE --
Q.

600-

44

'U
-' a.

400

200 ! ,
0 50 100 150 200

-APi (MPa)

Figure 5. Pressure-Wave Sensitivity for a 175-mm,
M107 Gun (M86A2 (Zone 3) Propelling Charge)
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B. Problem Area5.

There exists, unfortunately, a number of areas of co-icern associated both
with the physical foundation for and applicaLion of the assessment procedures
just described. Treating the latter first, many times it is impossible to
achieve good fits of statistical distribution functions to the experimentally
obtained populations of -APi data. This may be, in part, a consequence of
the fact that -APi is not the most physically well-motivated parameter of
interest; this possibility is under separate investigation. In addition, use
of the Kolmogorov-Smirnov statistic to provide an extrapolation to failure
levels well outside the range of experimental data leads to extremely broad
confidence bands associated with the prediction.

The current study, however, was not motivated by these or any related
concerns. Rather, i4- deals with the major physical assumption on which the
assessment procedure is based, that being the existence of a unique relation-
ship between -APi and Pmax for a given propelling charge/weapon combination.
The uniqueness of this relationship is essential first to allow generation of
the sensitivity curve via intentionally-altered ignition systems and second
to assume applicability of a curve so generated to the much broader class of
failures that occur over many years of fielded uses of production charges.

Having said this, we immediately weaken the requirement to "nearly
unique." It is clear that a detailed analysis of the chemically reacting,
two-phase flow processes leading to pressure waves in guns and linking their
presence to increases in peak pressure will lead us to the conclusion that
in the limit this relationship cannot be unique. Moreover, if these processes
include such mechanisms as mechanical failure of propellant grains, one
should expect some variation in performance even for virtually identical
firing conditions. The key question then becomes whether or not the Pmax
vs -APi relationship is near enough to being unique to be useful.

Since the early systematic studies of May and ClarkeS, much has been
learned about the nature of this relationship. One major factor influencing
the sensitivity curve is the initial temperature of the propelling charge.
If one ascribes pressure increases accompanyinghigh levels of pressure waves
to grain fracture, as suggested by Horst et al. , the ihcreasing sensitivity
of peak pressure to pressure waves for cold-conditioned charges is not sur-
prising, as an increased brit leness of propellant grains at cold temperatures
has been demonstrated experimeitally 7 . This complicating feature of the
Pmax vs -APi relationship merely requires performiag the described safety
assessment procedures at both hot and cold temperature extremes.

17



As the failure pressure for the system may also be temperature-dependent,
the role of initial temperature will have to be considered throughout the
analysis. Similar though smaller corrections may be, at least conceptually,
applied for any influence on Pmax vs -APi sensitivity imparted by pro-
jectile type, wear state of the gun, recoil system, etc..

In the area of ignition system modifications, however, no such cor-
rectioo is possible and hence the requirement for approximate uniquebess
is absolut-. Since modifications to the ignition system are intentionally

introduced to assure the generation of large-amplitude pressure waves
with reasonably few firings, we assume that the curve so generated would
not have been different had we selected another set of igniter modifications
for testing. While different faults may or may not lead to different
pressure-wave levels, a single, sensitivity curve must be defined by all
such -APi, Pmax data pairs. It is with this fundamental assumption that
the follcwing study deals.

III. 155-mm HOWITZER FIRINGS

Since major concerns exist both in terms of how to generate a Pmax
vs - 1'Pi sensitivity curve and whether such a curve, once generated, is
unique and universally applicable to a given charge/weapon interface, an
experimental investigation was undertaken to quantify the effects of de-
liberately induced high-amplitude pressure waves on the peak chamber pres-

sure exhibited by a high-performance artillery charge. The parameters
varied to induce the waves were charge diameter, charge standoff, and ig-
nition train characteristics (.configuration, interfaces, basepad composi-
tion, etc.).

A. Charge Design and Construczion

Standard 155-mm, M203 Propelling Charges, Lots IND-78H-069806, IND-78F-
069805, and IND-79K-069960 were obtained for testing from Project Manager,
Cannon Artillery Weapons System. The M203 Charge is the top zone (8S) for
the U.S. Army 155-mm, M198 Towed Howitzer. Depicted in Figure 8, this charge
employs M3OAI triple-base propellant, ignited by a basepad and centercore
ignition system employing Class 1, Black Powder. The test charges were
fabricated by unloading the standard M203 charges, making the desired
changes to the igniter tube, snake, basepad, etc., and then reloading the
standard 7-perforation propellant. Since the possibility of catastrophic
failure of the gun or breech exists with tests of this nature, the charge
weight for all tests was reduced from the standard 11.80 kg to 10.89 kg.
Fabrication of the full-bore charges was accomplished by modifying the bag
by inserting a tapered wedge of cloth to form a sleeve wherein the spindle
end was larger in diameter than the forward chamber end. The standard
7-perforation propellant was then -eloaded into the full-bore bags. The
excess material caused by the down.oading of the charges was removed and
the front end-cover was sewn back on. The reassembled charges were then each
secured in a lacing jacket to give the charge rigidity and maintain com-
ponent integrity. All charge modifications (loading, bag sewing, basepad

18
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and centercore revamping, etc.) were done either at the BRL or the Material
Testing Directorate (MTD). Table 1 provides a general outline of the
charge types tested in this study. All charges were conditioned at a tempera-
ture of 295-300 K for at least 24 hours prior to firing. The charges were
loaded into the cannon chamber at varying stand-offs (distance from spindle
face to base of propellant basepad) depending on the requirements of the
test. Standard MlO1, inert-loaded projectiles, Lot E-SXH-2-6-57, available
at the BRL, were used for all firings. The weight of the projectiles
(43.63 ± .04 kg) was accurately monitored by using on-post MTD loading
facilities.

B. Test Procedure

All firings were conducted at the BRL Sandy Point Firing Facility (R-18)
in an M185 Cannon, modified to provide a chamber configuration similar to
that of the M199 Cannon (see Figure 9). Multiple station pressure-time
data, differential pressures, and projectile velocities were recorded by the
Ballistic Data Acquisition System (BALDAS), under the contrul of a PDP11/45
minicomputer. Pressures were measured using Kistler 607C3 piezoelectric
transducers, and projectile velocity was measured by solenoid coils approxi-
mately 20 and 35 meters from the muzzle. Ignition delays were recorded by
measuring the interval between the time the firing pulse was sent to the
gun to the time a pressure of 10 MPa was first detected on the spindle gage.
A backup analog magnetic tape system also recorded all data.

" SPINDLE A*-]

3

__K b-SPITHOLE ,
%S

A4J4

.90 M
1.02 M SECTION A-A

Figure 9. Locations of Pressure Taps in the Modified,

M185 Cannon (Range 18)
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C. Firing Results

Nineteen series of test firings, encompassing many experimental para-
meters, were fired over a two-year period. Results will be discussed,
not in chronological order of firing, tat according to the three propellant
lots into which all the _.ries fall. Table 1 nomenclature will be employ-
ed throughout the discussion. Averaged firing data for each series are
tabulated in tables throughout the report with computer-generated plots of
selected data channels (spindle and forward pressure vs. time, pressure-
difference vs. time) included as the Appendix.

1. Propellant Lot RAD-77H-069806.

a. Standard-Diameter Charge, Standard Centercore: Series 1. Center-
core-ignited, standard-diameter charges, with no changes to the ignition
system and downloaded to 10.89 kg of propellant, were tested at zero stand-
off from the spindle face. Past dataD suggested that no standoff between
the spindle face and propelling charge promoted the formation of pressure

waves. Baseline firing data for this loading condition were required to
ensure that pressures and pressure waves with this charge weight would be
at safe levels. A four-round series yielded average values for Pmax and
-APi of 262 MPa and 13 MPa respectively, with a maximum individual -APi
of 26 MPa. Average values for projectile velocity and ignition delay were
758 m/s and 44 nis, respectively. Since these data were considered at a
safe level, all subsequent series discussed will be at this charge weight.

b. Standard Diameter Charge, No Black Powder Snake in Nitrocellulosc
Centercore; Series 2-3-4. Centercore-ignited, standard-diameter charges
with the black powder snake removed from the nitrocellulose (NC) center-
core tube were tested at zero, 2.5-cm and maximum standoff (24.0 cm).
Table 2 summarizes the firing results for these three series. As expect-
ed, the removal of the black powder snake caused local base ignition of
the charges as indicated by the large -APi. The ignition delay increased
as t'.- charge standoff increased. Although Pma-z and -APi were essentially
the same for the three series, the standard deviation at maximum standoff
for -APi was considerably higher than at zero or 2.5-cm s-andoff.
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TABLE 2. SUMMARY OF FIRING DATA* FOR STANDARD-DIAMETER CHARGES,
NO BLACK POWDER SNAKE IN NITROCELLULOSE CENTERCORE
(PROPELLANT LOT RAD-77H-069806).

Charge Projectile Ignition
Standoff Velocity Piax -lPi Delay

Series (cm) (m/s) (lVPa) (MPa) (ms)

2 0 759. 280. 54. 66.
(0.0) (1.2) (2.7) (2.2) (4.6)

4 2.5 762. 278, 50. 132.

(0.01 (3.6) (10.4) (3.6) (121.S)

3 24.0 764. 280. 57. 348.
(0.8) (7.1) (11.2) (11.8) (107.4)

* Values shown are averages for 4 firings; sample standard deviations are

shown in parentheses.

c. Standard-Diameter Charge, Half Black Powder Snake in Nitro-
cellulose Centercore; Series 7-8. Centercore-ignited, standard-diameter
charges with modified black powder snakes were tested at 2.5-cm and max-
imum standoff. The black powder snake was modified by reducing its
length by half and repositioning the reduced snake at the front of the
NC centercore. This left a gap of about 30 cm between the black powder
basepad and the snake. Firing results are summarized in Table 3. Pressure
and velocity were similar to Series 1, the "standard" wherein no
changes were made to the ignition system. The substantial reductions
in -APi and ignition delay for both charge standoffs from those noted in
Series 2-3-4 were attributed to the additional 56 g of black powder (half-
length black powder snake) which partly served to function as a normal,
full-length snake.

TABLE 3. SUMMARY OF FIRING DATA* FOR STANDARD-DIAMETER CHARGES,
HALF BLACK POWDER SNAKE IN NITROCELLULOSE CENTERCOR n
(PROPELLANT LOT RAD-77H-069806)

Charge Projectile Ignition

Standoff Velocity Pmax -APi Delay
Series (cm) (m/s) (MPa) (MPa) (m.s)

7 2.5 759. 259. 2.5 93.
(0.0) (1.9) (4.2) (1.7) (9.4)

8 20.9 762. 262. 3.5* 156.
(0.4) (3.6) (6.5) (123.9)

* Values shown are averages for 4 firings (Series 8, -APi, is for 2 rounds);

sample standard deviations are shown in parentheses.
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d. Standard-Diameter Charge, Black Powder in Nitrocellulose Center-
core, No Snake; Series 11-12. Centercore-ignited, standard-diameter charges
were modified by removing the black powder from the cloth snake and reload-
ing the 112 g of black powder directly into the forward section of the
nitrocellulose tube. The powder was prevented from falling back on the
basepad by inserting a 3-cm thick wad of cotton waste forward into the
centercore until it contacted the black powder. This left a large gap
between the basepad and the wad of cotton waste and significally reduced
the porosity of the 'lack powder. Firing results are summarized in Table
4.

TABLE 4. SIMWIAY OF FIRING DATA* FOR STANDARD-DIAMETER CHARGES,
BLACK POWDER IN NITROCELLULOSE CENTERCORE, NO SNAKE
(PROPELLANT LOT RAD-77H-069806)

Charge Projectile Ignition
Standoff Velocity Pmax -APi Delay

Series (cm) (m/s) (MPa) (MPa) (ms)

11 2.5 765. 267.* 34.* 803*
(0.0) (4.7) (10.6) (23.9) (636)

12 26.2 762. 252. 6. 68.
(0.2) (2.3) (11.8) (1.7) (6.1)

* Values shown are averages for 4 firings (Series 11, Pmax, -APi, and

"Fnition delay are for three rounds); sample standard deviations are
shown in parentheses.

Results for these two series were inconsistent from previous firings.
Pressure for both series and ignition delay for Series 12 were similar
to Series 1 which had a standard black powder snake in the NC centercore.
The -APi's for Series 11 and 12, although greatly different from each
other, were smaller Than those noted for Series 2-3-4 which had no black
powder in the NC centercore. The individual ignition delays for Series
11 which were extremely large and variable (1078, 1255, and 76 ms) as well as
the large standard deviation in -APi suggest that ignition for the 2.5-cm
standoff may have depended on whether the ignition products from the 28
g of black powder basepad penetrated the wad of cotton waste in the NC
tube and ignited the 112 g of black powder (short delay, low -APi) or
simply spot-ignited the NC tube (long delay, high -APi). The short and
consistent ignition delays for Series 12 qs well as the character of the
-APi traces (Appendix) strongly suggest ignition for this series oc-
curred at the front of the charge where the black powder in the NC center-
core was concentrated. Apparently, for Series 12, the effects of charge
standoff, location of black powder and parasitic obstruction in the NC
tube combined to produce stable burning and small pressure waves.

e. Standard-Diameter Charge, Base-Ignited; Series 9-10. Base-
ignited, standard-diameter chErges were fabricated from standard charges
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by removing the black powder snake and NC centercore and fired at two
charge standoffs. Table 5 summarizes the firing results.

TABLE 5. SUMMARY OF FIRING DATA* FOR STANDARD-DIAMETER CHARGES,

BASE-IGNITED (PROPELLANT LOT RAD-77H-069806)

Charge Projectile Ignition
Standoff Velocity Pmax -APi Delay

Series (cm) (m/s) (MPa) (MPa) (ms)

9 2.5 755. 252. 46. 1270.
(0.0) (3.7) (3.9) (3.7) (798.7)

10 27.4 758. 257. 42. 1322.
(0.2). (1.8) (3.8) (4.5) (973.7)

* Values shown are averages for 4 firings; sample standard deviations are
shcwn in parentheses.

The decrease in macroscopic propellant bed porosity by elimination of the
centercore contributed greatly to the nonsimultaneous ignition of the pro-
pellant grains as indicated by the large -APi and the very large ignition
delays for both standcff conditions. The range of the delay for Series 9
from 382 to 1987 ms and Series 10 from 382 to 2258 ms indicate serious
problems in ignition and flamespreading. Apparently, the 28 g of Class 1,
Black Powder in the basepad was barely sufficient in conjunction with the
large annular and axial ullage to ignite the charge.

f. Full-Bore Charge. Base-Ignited; Series 5-6. Base-ignited, full-
bore charges were fabricated and fired at two charge standoffs. This
configuration was considered the most severe for induciag pressure waves
since all annular ullage was eliminated between the charge and the chamber
wall. Firing results are shown in Table 6.

TABLE 6. SUMMARY OF FIRING DATA* FOR FULL-BORE CHARGES,
BASE-IGNITED (PROPELLANT LOT RAD-77H-069806)

Charge Projectile Ignition
Standoff Velocity Pmax -APi Delay

Series (cm) (m/s) (MPa) (MPa) (ms)

5 2.5 772. 270. 54. 162.
(0.0) (8.1) (13.8) (10.7) (47.4)

6 27.9 771. 262.* 46.* 129.
(0.0) (5.2) (-) (-) (22.1)

* Values shown are averages for 4 firings (Series 6, Pmax and -APi are for

2 firings; Series 6, ignition delay is for 3 firings); sample standard
deviations are shown in parentheses.
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As expected, this series did produce large-APi's, but not larger than ex-
perienced with some of the other series. The substantial reduction in
ignition delay over the standarm-diameter, base-ignited charges (Series
9-10) is attributed to the elimiiation of annular ullage. Hot ignition
gases, constrained from expandirg into this ullage and thus forced to
penetrate the propellant bed, qutckly ignited the charge. The large -APi's
attest to the nonsimultaneity of the ignition process.

g. Summary of Firings witf. "ropellant Lot RAD-77H-069806. The
experimental firings, which were divided into six groups based on charge
configuration and further dividec. into 4-round series based on charge
standoff, were devised to promote nonuniform ignition leading to pressure-
wave formation. Within each group the effect of charge standoff on each
measured parameter (pressure, -APi, velocity, etc.) has been discussed. The
averaged data for all 12 series are plotted on Figures 10, 11, and 12.
Dotted lines connect each series within a group. The effect of standoff
within or across a group has essen'zally no effect on projectile velocity,
which averaged 762 m/s (Figure 10), ýven though standoff for Series 11
and 12 and charge configuration, ir general, produced significant changes
in -APi level. Pma- was inconsistently affected by charge standoff: namely,
independent for Series 2-3-4, 7-8, and 9-10 and decreasing for Series
11-12 and 5-6 with increasing standoff (Figure 11). In general, as -APi
increased, Pmax remained aroind 260 MPa until -APi reached 50 MPa; as
-APi increased above 50 MPa, the Pmax showed an increase (Series 2-3-4).
Velocity did not increase with increasing Pmax (Figure 12), even though
Pmax varied from 252 to 280 MPa.

2. Propellant Lot RAD-79E-069960. Three base-ignited, 5-round series,

one of standard diameter and two of full-bore configuration, were tested
with this lot of propellant. Basepad composition was the primary mechanism
for inducing large -APi's, with charge diameter and standoff providing
tradeoff parameters to ensure against excessive waves that might damage
the tube. Data for the three series, as chronologically fired, are shown
in Table 7. When the experimental condition (basepad composition. charge
standoff) consisted of three or more rounds, the data are shown as an
average; otherwise, the individual firings are presented.

All the rounds for Series 13 were fired at zero standoff in order to
induce large -APi's with the relatively slow burning CBI/black powder base-
pad. As the basepad composition became more energetic, (Series 15 faster
than 14 which was faster than 13), the charge standoff was changed from the
"worst" no standoff condition to standoffs less likely to cause catastrophic
pressure waves. The Class 3, Black Powder used in Series 15 was considered
too fast to use in full-bore charges; therefore, standard-diameter, base-
ignited charges were used for this series.
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The effect of charge standoff (Table 7) on PmaX, -APi, and muzzle
velocity is minimal for the standard-diameter charges (Series 15). Ap-
parently the increase in annular ullage from full-bore to standard-diameter
configurations offset the effects of both charge standoff and the faster
burning black powder igniter, thus keeping the -APi's from building to
catastrophic levels. Ignition delay was inconsistent, showing a maximum at
an intermediate charge standoff.

In Series 14, Pmax, -APi, and muzzle velocity have the same nominal
values at 2.5-cm and 12.7-cm standoffs with a maximum occurring at the
intermediate 7.6-cm standoff. Ignition delay increased as charge stand-
off increased. More rounds would have to be fired to establish if charge
standoff is one of the conditions for inducing large -APi's for this series
as well as for Series 13 which was fired at only one standoff.

The data for all the rounds in the three series are plotted as shown
on Figures 13, 14, and 15. In addition, the averaged value for the five
rounds in each of Series 13 and 15 and four rounds of Series 14 are super-
imposed on the plots. The data for the 7.6-cm standoff (Series 14) were
not included in the average of this series because the abnormally large

Pmax and -APi were not typical for the charge standoff. Series 15 with
the same range of standoffs and using a more energetic basepad for igni-
tion did not exhibit wide variations in P-ax and -APi" Figures 13 and 14
show, respectively, that the dependence of velocity and Pmax on -APi is
divided, roughly, into two groups, delineated by a -APi of 65 MPa. Below
this value, fairly large excursions in -APi produce relatively small
"average" changes in Pmax and velocity. When -APi increases beyond -65
MPa, a fairly large increase in Pmax and velocity is noted. Velocity
dependence on Pmax even with large -APi's, is fairly linear, increasing
with increasing Pmax (Figure 15).

3. Propellant Lot RAD-77G-069805. Four full-bore diameter, base-
ignited series were tested with this lot of propellant. Basepad composi-
tion, charge standoff and charge diameter were again varied to encourage and
"control the formation of large pressure waves. The goal remained to generate
similarly high levels of pressure waves via different mechanisms to deter-
mine whether or not correspondingly similar increases in maximum chamber
pressure occurred. Table 8 gives a summary of the data. The standard
deviation is shown in parenthesis if more than three rounds were fired
at one condition (standoff, etc.).
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All the rounds for Series 16-17 were fired with the two-part basepad
composition at no standoff in order to induce large -APi's. Because of
the extremely high -APi for one round of Series 17, both basepad composi-
tion and charge standoff were changed for the first round of Series 18.
After ascertaining the functioning of this basepad configuration did not
induce excessive -APi's, the remainder of Series 18 was fired at no standoff.
The first round of Series 19 with a Class 5, Black Powder basepad and
2.5-cm standoff produced such a large pressure and -APi that no further
rounds were done in fear of damaging the tube.

The data for all the rounds of Series 16-19 are plotted as shown
in Figures 16, 17, and 18. In addition, the "averaged" values for all
rounds in Series 16 and 18 and two rounds of Series 17 are superimposed
on the plots. The third zound of Series 17 (extremely high Pmax and
-APi is shown as an individual point. Except for Series 19 and the
first round of Series 18, this data represents a zero-standoff condition.
The Pmax and -APi are the highest for the three lots of propellant used
in these tests. Ignition delay varies directly with the quickness of the
basepad being the slowest for CBI alone and the fastest for Class 5,
Black Powder. Although the data scatter is large, projectile velocity
(Figure 16) and Pmax (Figure 17) increase with increasing -APi. Pmax is
especially sensitive to the high -tPi's, ranging from 300 to 400 MPa as
-APi goes from 60 to 115 MPa. Velocity is directly dependent on Pmax,
increasing as the pressure increases (Figure 18).

4. All Propellant Lots. As previously noted, three different
propellant lots, as well as various charge diameters, charge lengths,
ignition systems (base vs centercore), charge standoffs, charge propellant
porosity (random vs stacked propellant), and igniter brisance (black
powder vs CBI) were employed to induce pressure-wave formation in the
155-mm howitzer. The average value of Pm,. and -AP2 4•r zzh -e-
nineteen series aforementioned is snown on Figure 19. As -APi ranged
from 2 to 116 MPa, Pmax increased from 250 to 468 MPa.

IV. CONCLUSIONS

Although several of the series previously discussed were of in:;0If-
ficient size to ascertain standoff effects of different charge confi•,ura-
tions, and round-to-round variation within series at the same standoff
were somewhat large, several conclusions from the firings o!n the Prax vs
-APi sensitivity curve can be made.

1. The methods of inducing pressure waves produced a broad range
of data with -APi (2 MPA to 116 MPa) increases generally accompanied by
increases in Pmax (250 MPa to 468 MPa). Within the limits of reasonable
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occasion-to-occasion differences and possible experimental errors, the
existence of signifi. ntly different Pmax vs -APi curves for this charge/
weapon combination could not be demonstrated.

2. A serious concern is raised by the apparent differences in the
ease with which one could generate substantial pressure waves in similar
charge configurations using different propellant production lots. Current
safety assessment procedures usually employ a single propellant lot. If yet
undefined lot-to-lot propellant differences can influence the propensity
of a given charge design to exhibit large pressure waves, then projected
failure rates based on an expected population of firing data consisting of
firings with only one propelling charge lot may well be inappropriate for

different propellant charge lots.

41



REFERENCES

1. A.J. Budka and J.D. Knapton, "Pressure Wave Generation in Gun Systems:
A Survey," B13iistic Research Laboratory, Aberdeen Proving Ground, MD,
Memorandum Report 2567, December 1975. (AD #BO08893L)

2. D.W. Culbertson, M.C. Shamblen, and J.S. O'Brasky, "Investigation of
5"/38 Gun In-Bore Ammunition Malfunctions," Naval Weapons Laboratory,
Dahlgren, VA, TR-2624, December 1971.

3. M.C. Shamblen and J.S. O'Brasky, "Investigation of 8"1/55 Close Aboard
Malfunctions," Naval Weapons Laboratory, Dahlgren, VA, TR-2753, April
1973.

4. P.J. Olenick, "Investigation of the 76-mm/62 Caliber Mark 75 Gun Mount
Malfunctic-s," Naval Surface Weapons Center, Dahlgren, VA, TR-3411,
October 1975.

5. E.V. Clarke, Jr. and I.W. May, "Subtle Effects of Low-Amplitude Pressure
Wave Dynamics on the Ballistics Performance of Guns," llth JANNAF Com-
bustion Meeting, CPIA Publication 261, Vol. 1, pp. 141-156, December
1974.

6. A.W. Horst, I.W. May, and E.V. Clarke, Jr., "The Missing Link Between
Pressure Waves and Breechblows," USA ARRADCOM, Ballistic Research
Laboratory, Aberdeen Proving Ground, MD, Memorandum Report 02849,
July 1978. (A058354)

7. K.H. Russel and H.M. Goldstein, "Investigation and Screening of M17
Propellant Production for Lots Subject to Poor Low Temperature Perfor-
mance, Picatinny Arsenal, Dover, NJ, DB-TR-7-61, June 1961.

8. N. Lockett, "British Work on Solid Propellant Ignition," Bulletin of

the First Symposium on Solid Propellant Ignition, Solid Propellant
Information Agency, Silver Spring, MD, September 1953.

i4

Ii 42



ii

'1

APPENDIX

Computer-Generated Plots of Selected Data Channels
[Spindle (solid linel and Forward (dotted line) Pressure vs

Time, Pressure Difference vs Time]
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